Congruences for Han’s Generating Function

نویسندگان

  • DAN COLLINS
  • SALLY WOLFE
چکیده

For an integer t ≥ 1 and a partition λ, we let Ht(λ) be the multiset of hook lengths of λ which are divisible by t. Then, define aeven t (n) and aodd t (n) to be the number of partitions of n such that |Ht(λ)| is even or odd, respectively. In a recent paper, Han generalized the Nekrasov-Okounkov formula to obtain a generating function for at(n) = aeven t (n)− aodd t (n). We use this generating function to prove congruences for the coefficients at(n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-existence of Ramanujan Congruences in Modular Forms of Level Four

Abstract. Ramanujan famously found congruences for the partition function like p(5n + 4) ≡ 0 (mod 5). We provide a method to find all simple congruences of this type in the coefficients of the inverse of a modular form on Γ1(4) which is non-vanishing on the upper half plane. This is applied to answer open questions about the (non)-existence of congruences in the generating functions for overpar...

متن کامل

Congruences for Andrews' spt-Function Modulo 32760 and Extension of Atkin's Hecke-Type Partition Congruences

New congruences are found for Andrews’ smallest parts partition function spt(n). The generating function for spt(n) is related to the holomorphic part α(24z) of a certain weak Maass form M(z) of weight 3 2 . We show that a normalized form of the generating function for spt(n) is an eigenform modulo 72 for the Hecke operators T (`2) for primes ` > 3, and an eigenform modulo p for p = 5, 7 or 13 ...

متن کامل

`-adic Properties of the Partition Function

Ramanujan’s famous partition congruences modulo powers of 5, 7, and 11 imply that certain sequences of partition generating functions tend `-adically to 0. Although these congruences have inspired research in many directions, little is known about the `-adic behavior of these sequences for primes ` ≥ 13. We show that these sequences are governed by “fractal” behavior. Modulo any power of a prim...

متن کامل

The Partition Function and Hecke Operators

The theory of congruences for the partition function p(n) depends heavily on the properties of half-integral weight Hecke operators. The subject has been complicated by the absence of closed formulas for the Hecke images P (z) | T (`), where P (z) is the relevant modular generating function. We obtain such formulas using Euler’s Pentagonal Number Theorem and the denominator formula for the Mons...

متن کامل

Arithmetic Properties for Apéry-like Numbers

It is known that the numbers which occur in Apéry’s proof of the irrationality of ζ(2) have many interesting congruences properties while the associated generating function satisfies a second order differential equation. We prove congruences for numbers which arise in Beukers’ and Zagier’s study of integral solutions of Apéry-like differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008